Arithmetic Equivalence for Function Fields, the Goss Zeta Function and a Generalization

نویسندگان

  • GUNTHER CORNELISSEN
  • ARISTIDES KONTOGEORGIS
چکیده

A theorem of Tate and Turner says that global function fields have the same zeta function if and only if the Jacobians of the corresponding curves are isogenous. In this note, we investigate what happens if we replace the usual (characteristic zero) zeta function by the positive characteristic zeta function introduced by Goss. We prove that for function fields whose characteristic exceeds their degree, equality of the Goss zeta function is the same as Gassmann-equivalence (a purely group theoretical property), but this statement fails if the degree exceeds the characteristic. We introduce a ‘Teichmüller lift’ of the Goss zeta function and show that equality of such is always the same as Gassmann equivalence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adelic Approach to the Zeta Function of Arithmetic Schemes in Dimension Two

This paper suggests a new approach to the study of the fundamental properties of the zeta function of a model of elliptic curve over a global field. This complex valued commutative approach is a two-dimensional extension of the classical adelic analysis of Tate and Iwasawa. We explain how using structures which come naturally from the explicit two-dimensional class field theory and working with...

متن کامل

ARITHMETIC-BASED FUZZY CONTROL

Fuzzy control is one of the most important parts of fuzzy theory for which several approaches exist. Mamdani uses $alpha$-cuts and builds the union of the membership functions which is called the aggregated consequence function. The resulting function is the starting point of the defuzzification process. In this article, we define a more natural way to calculate the aggregated consequence funct...

متن کامل

A more accurate half-discrete Hardy-Hilbert-type inequality with the best possible constant factor related to the extended Riemann-Zeta function

By the method of weight coefficients, techniques of real analysis and Hermite-Hadamard's inequality, a half-discrete Hardy-Hilbert-type inequality related to the kernel of the hyperbolic cosecant function with the best possible constant factor expressed in terms of the extended Riemann-zeta function is proved. The more accurate equivalent forms, the operator expressions with the norm, the rever...

متن کامل

Transcendence in Positive Characteristic and Special Values of Hypergeometric Functions

We prove a simple transcendence criterion suitable for function field arithmetic. We apply it to show the transcendence of special values at non-zero rational arguments (or more generally, at algebraic arguments which generate extension of the rational function field with less than q places at infinity) of the entire hypergeometric functions in the function field (over Fq) context, and to obtai...

متن کامل

Zeta Functions for Equivalence Classes of Binary Quadratic Forms

They are sums of zeta functions for prehomogeneous vector spaces and generalizations of Epstein zeta functions. For the rational numbers and imaginary quadratic fields one can define these functions also for SL(2, ^-equivalence, which for convenience we call 1equivalence. The second function arises in the calculation of the Selberg trace formula for integral operators on L(PSL(2, (!?)\H) where ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009